Fruit and Vegetable Classification using Convolutional Neural Network with MobileNetV2

Authors

  • Muhammad Khoiruddin
  • Silvester Tena Department of Electrical Engineering, Faculty of Science and Engineering, Universitas Nusa Cendana, Kupang

DOI:

https://doi.org/10.61098/jarcis.v2i2.197

Keywords:

fruit, vegetable, classification, CNN, MobileNetV2

Abstract

Fruits are parts of plants that originate from the plant's pistils and usually contain seeds. Meanwhile, vegetables are leaves, legumes, or seeds that can be cooked. Fruits and vegetables have many variations that can be distinguished based on color, shape, and texture. However, the development of Artificial Intelligence (AI) technology has become pervasive in everyday life, one aspect of which is demonstrated through deep learning, a method of AI learning. Therefore, developing deep learning for tasks such as automatically detecting surrounding objects is necessary. This study aims to classify types of fruits and vegetables by applying a Convolutional Neural Network (CNN) with the MobileNetV2 architecture. In this study, fruits and vegetables encompassing 36 categories, including significant types in daily life, were considered. The results show that the classification system achieved an excellent accuracy rate of 97.31%, demonstrating the effectiveness of using deep learning techniques for this application

Downloads

Download data is not yet available.

References

H. Mureşan and M. Oltean, “Fruit recognition from images using deep learning,” Acta Univ. Sapientiae, Inform., vol. 10, no. 1, pp. 26–42, 2018, doi: 10.2478/ausi-2018-0002.

D. Mirwansyah and Arief Wibowo, “Fruit Image Classification Using Deep Learning Algorithm: Systematic Literature Review (Slr),” Multica Sci. Technol. J., vol. 2, no. 2, pp. 120–123, 2022, doi: 10.47002/mst.v2i2.356.

F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” J. Informatics Comput. Sci., vol. 1, no. 02, pp. 104–108, 2020, doi: 10.26740/jinacs.v1n02.p104-108.

M. M. Rahman, M. A. Basar, T. S. Shinti, M. S. I. Khan, H. M. H. Babu, and K. M. M. Uddin, “A deep CNN approach to detect and classify local fruits through a web interface,” Smart Agric. Technol., vol. 5, no. July, p. 100321, 2023, doi: 10.1016/j.atech.2023.100321.

M. F. Nadhif and S. Dwiasnati, “Classification of Date Fruit Types Using CNN Algorithm Based on Type,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 36–42, 2023, doi: 10.57152/malcom.v3i1.724.

G. Kaur, N. Sharma, R. Chauhan, H. S. Pokhariya, and R. Gupta, “Fruit and Vegetable Classification Using MobileNet V2 Transfer Learning Model,” 2023 3rd Int. Conf. Smart Gener. Comput. Commun. Networking, SMART GENCON 2023, pp. 1–6, 2023, doi: 10.1109/SMARTGENCON60755.2023.10442618.

J. Gu et al., “Recent advances in convolutional neural networks,” Pattern Recognit., vol. 77, pp. 354–377, 2018, doi: 10.1016/j.patcog.2017.10.013.

F. A. Azis, H. Suhaimi, and E. Abas, “Waste Classification using Convolutional Neural Network,” ACM Int. Conf. Proceeding Ser., no. July, pp. 9–13, 2020, doi: 10.1145/3417473.3417474.

K. Hameed, D. Chai, and A. Rassau, “A sample weight and adaboost CNN-based coarse to fine classification of fruit and vegetables at a supermarket self-checkout,” Appl. Sci., vol. 10, no. 23, pp. 1–18, 2020, doi: 10.3390/app10238667.

M. T. Vasumathi and M. Kamarasan, “An lstm based cnn model for pomegranate fruit classification with weight optimization using dragonfly technique,” Indian J. Comput. Sci. Eng., vol. 12, no. 2, pp. 371–384, 2021, doi: 10.21817/indjcse/2021/v12i2/211202051.

S. S. S. Palakodati, V. R. R. Chirra, Y. Dasari, and S. Bulla, “Fresh and rotten fruits classification using CNN and transfer learning,” Rev. d’Intelligence Artif., vol. 34, no. 5, pp. 617–622, 2020, doi: 10.18280/ria.340512.

S. Tena, R. Hartanto, and I. Ardiyanto, “Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method,” J. Imaging, vol. 9, no. 8, 2023, doi: 10.3390/jimaging9080165.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.

C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June, pp. 1–9, 2015, doi: 10.1109/CVPR.2015.7298594.

T. Turap, T. B. Merupakan, T. B. Lebih, and T. D. Turap, “object recognition with gradient based learning,” vol. 1, pp. 1–17.

Dwi Fitriana Sari and D. Swanjaya, “Implementasi Convolutional Neural Network Untuk Identifikasi Penyakit Daun Gambas,” Semin. Nas. Inov. Teknol., vol. 04, no. 03, pp. 137–142, 2020.

A. G. Howard et al., “MobileNets: efficient convolutional neural networks for mobile vision applications,” Apr. 2017, doi: 10.48550/arXiv.1704.04861.

J. Velasco et al., “A smartphone-based skin disease classification using mobilenet CNN,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 5, pp. 2632–2637, 2019, doi: 10.30534/ijatcse/2019/116852019.

U. Seidaliyeva, D. Akhmetov, L. Ilipbayeva, and E. T. Matson, “Real-time and accurate drone detection in a video with a static background,” Sensors (Switzerland), vol. 20, no. 14, pp. 1–18, 2020, doi: 10.3390/s20143856.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A Guide to Convolutional Neural Networks for Computer Vision,” Synth. Lect. Comput. Vis., vol. 8, no. 1, pp. 1–207, Feb. 2018, doi: 10.2200/S00822ED1V01Y201712COV015.

S. Sari, I. Soesanti, and N. A. Setiawan, “Best Performance Comparative Analysis of Architecture Deep Learning on CT Images for Lung Nodules Classification,” Proc. - 2021 IEEE 5th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. Appl. Data Sci. Artif. Intell. Technol. Glob. Challenges Dur. Pandemic Era, ICITISEE 2021, pp. 138–143, 2021, doi: 10.1109/ICITISEE53823.2021.9655872.

S. Farhadpour, T. A. Warner, and A. E. Maxwell, “Selecting and Interpreting Multiclass Loss and Accuracy Assessment Metrics for Classifications with Class Imbalance: Guidance and Best Practices,” Remote Sens., vol. 16, no. 3, pp. 1–22, 2024, doi: 10.3390/rs16030533.

S. Tena and B. Y. Dwiandiyanta, “Transforming Woven Ikat Fabric : Advanced Classification Via Transfer Learning and Convolutional Neural Networks,” vol. XII, no. 2, pp. 73–82, 2023, doi: 10.35508/jme.v12i2.12579.

H. Prasetyo and B. A. Putra Akardihas, “Batik image retrieval using convolutional neural network,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no. 6, p. 3010, Dec. 2019, doi: 10.12928/telkomnika.v17i6.12701.

S. Tena, R. Hartanto, and I. Ardiyanto, “Content-based image retrieval for fabric images: A survey,” Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 3, p. 1861, Sep. 2021, doi: 10.11591/ijeecs.v23.i3.pp1861-1872.

Downloads

Published

2024-12-30

How to Cite

Khoiruddin, M., & Tena, S. (2024). Fruit and Vegetable Classification using Convolutional Neural Network with MobileNetV2. Journal of Applied Research In Computer Science and Information Systems, 2(2), 203–210. https://doi.org/10.61098/jarcis.v2i2.197