Comparison of Apriori and Fp-Growth Algorithms in Determining Package Menus at Sate Perawan Restaurant Sawangan Raya
DOI:
https://doi.org/10.61098/jarcis.v2i2.183Keywords:
Menu Package, Apriori Algorithm, FP-Growth Algorithm, Minimum Support, Minimum Confidence, Lift RatioAbstract
The culinary creative industry holds promising prospects as it is a necessity for society. However, the variety of menu items and high customer demand lead to slow ordering processes, which hinder service at Rumah Makan Sate Perawan. Additionally, some menu items are less popular among customers. To address these issues, a system is needed to assist in determining food and beverage package menus based on association rules. This system aims to facilitate business owners in organizing packages and improving sales. This study employs the Apriori and FP-Growth algorithms, using sales transaction data collected over a four-month period. The research applies a minimum support of 0.1 for food, 0.01 for beverages, and a minimum confidence of 0.6 for both categories. The results indicate that there is no significant difference between the two algorithms in terms of the generated packages, lift ratio evaluation, and runtime. In the food category, 5 association rules were generated with an average lift ratio of 1.1929, while in the beverage category, 2 rules were generated with an average lift ratio of 1.8990.
Downloads
References
“Indonesia Menjadi Inisiator Tahun Internasional Ekonomi Kreatif Dunia,” Kemenparekraf/Baparekraf RI.
“14 Jenis Industri dengan Peluang Menjanjikan ,” cimbniaga. Accessed: Mar. 06, 2024. [Online]. Available: https://www.cimbniaga.co.id/id/inspirasi/bisnis/14-jenis-industri-kreatif-yang-menjanjikan
N. Nurisya Merliani, N. Isnaeni Khoerida, N. Tri Widiawati, L. Adi Triana, and P. Subarkah, “Penerapan Algoritma Apriori Pada Transaksi Penjualan Untuk Rekomendasi Menu Makanan Dan Minuman,” Jurnal Nasional Teknologi Dan Sistem Informasi , vol. 8, pp. 9–10, 2022, doi: 10.25077/TEKNOSI.v8i3.2022.009- 016.
M. Qamal, Fadlisyah, and A. Zura Izmi Parapat, “Implementasi Data Mining Untuk Rekomendasi Paket Menu Makanan Menggunakan Algoritma Apriori,” TECHSI, vol. 14, no. 1, pp. 42–53, 2023.
“Sate Perawan yang Membuat Penasaran,” agronet.id. Accessed: Mar. 13, 2024. [Online]. Available: https://www.agronet.co.id/detail/travela/agrowisata/6609-Sate-Perawan-yang-Membuat-Penasaran
M. Elvis Syahri, D. Yusuf, U. Singaperbangsa Karawang, and K. Jawa Barat, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Untuk Menentukan Paket Promosi (Studi Kasus Kedai Warung Jambu),” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 4, 2023.
I. Musdalifah and A. Jananto, “Analisis Perbandingan Algoritma Apriori Dan FP-Growth Dalam Pembentukan Pola Asosiasi Keranjang Belanja Pelanggan,” Progresif: Jurnal Ilmiah Komputer, vol. 18, no. 2, pp. 175–184, 2022.
M. Riziq sirfatullah Alfarizi, M. Zidan Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “Penggunaan Python Sebagai Bahasa Pemrograman Untuk Machine Learning Dan Deep Learning,” 2023.
F. Mardianti and R. Fauzi, “Algoritma Apriori Dalam Menentukan Pola Konsumen Terhadap Tata Letak Barang,” Jurnalcomasie, vol. 3, pp. 130–139, 2020.
S. Aisyah and N. Normah, “Penerapan Algoritma Apriori Terhadap Data Penjualan Di Swalayan Koperasi Bappenas Jakara Pusat,” Paradigma – Jurnal Informatika dan Komputer, vol. 21, no. 2, pp. 235–242, Oct. 2019, doi: 10.31294/p.v20i2.
R. Sena Yudha, K. Auliasari, and R. Primaswara Prasetya, “Penerapan Algoritma Apriori Untuk Menghasilkan Pola Penjualan Produk Bangunan,” Jurnal Mahasiswa Teknik Informatika, vol. 4, no. 1, pp. 154–161, Mar. 2020.
E. Munanda and S. Monalisa, “Penerapan Algoritma Fp-Growth Pada Data Transaksi Penjualan Untuk Penentuan Tataletak Barang,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 7, no. 2, pp. 173–184, 2021.
S. Qomariah, Basrie, and S. F. Pa’a, “Implementasi Algoritma Apriori Pada Data Penjuanlan Produk Asesoris Cv Princes Diary Samarinda,” Just TI (Jurnal Sains Terapan Teknologi Informasi), vol. 12, no. 2, pp. 31–37, Jul. 2020, doi: 10.46964/justti v12i2.321.
P. Nur Harahap and Sulindawaty, “Implementasi Data Mining Dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus PT.Arma Anugerah Abadi Cabang Sei Rampah),” MATICS, vol. 11, no. 2, p. 46, Jan. 2020, doi: 10.18860/mat.v11i2.7821.
A. Setiawan and R. Mulyanti, “Market Basket Analysis dengan Algoritma Apriori pada Ecommerce Toko Busana Muslim Trendy (Market Basket Analysis with Apriori Algorithms in Ecommerce Trendy Muslim Clothing Stores),” JUITA: Jurnal Informatika, vol. 8, no. 1, pp. 11–18, May 2020.
A. F. Lestari and M. Hafiz, “Penerapan Algoritma Apriori Pada Data Penjualan Barbar Warehouse,” Jurnal Inovtek Polbeng - Seri Informatika, vol. 5, no. 1, pp. 96–105, 2020.
L. Kurniawati, A. Esa Kusuma, and B. Dewansyah, “Implementasi Algoritma Apriori Untuk Menentukan Persediaan Spare Part Compressor,” CESS (Journal of Computer Engineering System and Science), vol. 4, no. 1, pp. 6–10, Jan. 2019.
S. Awaliyah Rachmah Sutomo and F. Handayanna, “Analisis Pola Pembelian Obat di Apotek Sekar Adi Menggunakan Metode Algoritma Apriori Depok,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 4, pp. 112–127, Mar. 2020, [Online]. Available: http://tunasbangsa.ac.id/ejurnal/index.php/jsakti
N. Cholifah Sastya and D. I. Nugraha, “Penerapan Metode CRISP-DM dalam Menganalisis Data untuk Menentukan Customer Behavior di MeatSolution.” [Online]. Available: http://ejournal.unis.ac.id/index.php/UNISTEK
M. Sofyan Irwanto, F. A. Bachtiar, and N. Yudistira, “Klasifikasi Aktivitas Manusia Menggunakan Algoritme Computed Input Weight Extreme Learning Machine Dengan Reduksi Dimensi Principal Component Analysis”, doi: 10.25126/jtiik.202295504.
I. Qoni’ah and A. T. Priandika, “Analisis Market Basket Untuk Menentukan Asossiasi Rule Dengan Algoritma Apriori (Studi Kasus: Tb. Menara),” Jurnal Teknologi dan Sistem Informasi, vol. 1, no. 2, pp. 26–33, 2020, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Shabrina Putri, Ninuk Wiliani, Febri Maspiyanti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.